Gaussian based Image Segmentation Algorithm
نویسندگان
چکیده
منابع مشابه
Image Segmentation using Gaussian Mixture Model
Abstract: Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we used Gaussian mixture model to the pixels of an image. The parameters of the model were estimated by EM-algorithm. In addition pixel labeling corresponded to each pixel of true image was made by Bayes rule. In fact,...
متن کاملIMAGE SEGMENTATION USING GAUSSIAN MIXTURE MODEL
Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we have learned Gaussian mixture model to the pixels of an image. The parameters of the model have estimated by EM-algorithm. In addition pixel labeling corresponded to each pixel of true image is made by Bayes rule. In fact, ...
متن کاملImage segmentation by gaussian mixture models and modified FCM algorithm
The Expectation Maximization (EM) algorithm and the clustering method Fuzzy-C-Means (FCM) are widely used in image segmentation. However, the major drawback of these methods is their sensitivity to the noise. In this paper, we propose a variant of these methods which aim at resolving this problem. Our approaches proceed by the characterization of pixels by two features: the first one describes ...
متن کاملImage Segmentation based on Fuzzy Genetic Algorithm
Image segmentation is one of the most important tasks to extract information in image processing. To satisfy increasing requirement of image segmentation, a variety of segmentation methods have been developed over the past several years. Fuzzy c-means (FCM) is unsupervised segmentation technique that has been successfully applied to future analysis, clustering, and classification but the FCM an...
متن کاملImage Segmentation Based on Fuzzy Clustering Algorithm
Image segmentation plays an important role for machine vision applications. In this paper, we present a new segmentation strategy based on fuzzy clustering algorithm. The new algorithm includes the spatial interactions by assuming that the statistical model of segmented image regions is Gibbs Random Field ( GRF ). We specitjl the neighborhood system, the associated cliques. and the potentials o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Computer Applications
سال: 2020
ISSN: 0975-8887
DOI: 10.5120/ijca2020920615